09.11.2021
В прошлом году AMD окончательно развела ускорители для графики и вычислений, представив Instinct MI100, первый продукт на базе архитектуры CDNA, который позволил компании противостоять NVIDIA. Теперь же AMD подготовила новую версию архитектуры CDNA 2 и ускорители MI200 на неё основе. Новинки, согласно внутренним тестам, в ряде задач на голову выше того, что сейчас может предложить NVIDIA.
Циркулировавшие ранее слухи оказались верны — MI200 являются двухчиповыми решениями с 2.5D-упаковкой кристаллов (GCD) самих ускорителей, четырёх линий Infinity Fabric между ними и восьми стеков памяти HBM2e (8192 бит, 1600 МГц, 128 Гбайт, 3,2 Тбайт/c). В данном случае используется мостик EFB (Elevated Fanout Bridge), который позволяет задействовать стандартные подложки, что удешевляет и упрощает производство и тестирование ускорителей, не потеряв при этом в производительности и, что важнее, без существенного увеличения задержек в обмене данными.
Несмотря на то, что в составе ускорителя два GCD, системе они представляются как единое целое с общей же памятью. Каждый GCD в случае CDNA 2 включает 112 CU (Compute Unit), но в конечных продуктах они задействованы не все. CU разбиты на четыре группы (с индивидуальным планировщиком) с общим L2-кешем объёмом 8 Мбайт и пропускной способностью 6,96 Тбайт/с, который поделён на 32 отдельных блока. А сами блоки имеют индивидуальные подключения к контроллерам памяти в GCD.
Важное отличие CDNA 2 заключается в «подтягивании» производительности векторных FP64- и FP32-вычислений — они исполняются с одинаковой скоростью в отличие от CDNA первого поколения. Кроме того, появилась поддержка сжатых (packed) инструкций для операций FMA/FADD/FMUL для FP32-векторов. Второй крупный апдейт касается матричных вычислений. Для них теперь тоже есть отдельная поддержка FP64, и с той же производительностью, что и для FP32. Новые инструкции рассчитаны на блоки 16×16×4 и 4×4×4.
Поддержка FP16/BF16 в матричных ядрах, конечно, тоже есть, что позволяет задействовать их и для ИИ-задач, а не только HPC. Подспорьем для них в некоторых задачах будут два блока VCN (Video Codec Next) в каждом GCD. Они поддерживают декодирование H.264/AVC, H.265/HEVC, VP9 и JPEG, а также кодирование H.264/H.265, что потенциально позволит более эффективно работать ИИ-алгоритмам с изображениями и/или видео.
Для обмена данными между ускорителями и CPU используется единая шина Infinity Fabric (IF) с поддержкой кеш-когерентности. Всего на ускоритель приходится до восьми внешних линий IF, а суммарная скорость обмена данными может достигать 800 Гбайт/c. В наиболее плотной компоновке из четырёх MI200 и одного EPYC каждый ускоритель имеет по две линии для связи с CPU и со своим соседом. Причём внутренние и внешние IF-линии образуют два двунаправленных кольца между ускорителями. Каждая IF-линия опирается на x16-подключение PCIe 4.0, но в данном случае есть ряд оптимизаций конкретно под HPC-системы HPE Cray.
Дополнительно у каждого ускорителя есть собственный root-комплекс, что позволяет напрямую подключить сетевой адаптер класса 200G. И это явный намёк на возможность непосредственного RDMA-соединения с внешними хранилищами, поскольку в такой схеме на локальные NVMe-накопители линий попросту не остаётся. Более простые топологии уже предполагают использование половины линий IF в качестве обычного PCIe-подключения и задействуют коммутатор(-ы) для связи с CPU и NIC. В этом случае IF-подключение остаётся только между процессорами. Зато в одной системе можно объединить восемь MI200.
Чипы ускорителей MI250X изготовлены по 6-нм техпроцессу FinFet, содержат 58 млрд транзисторов и предлагают 220 CU, включающих 880 ядер для матричных вычислений и 14080 шейдерных ядер второго поколения. У MI250 их 208, 832 и 13312 соответственно. Для обеих моделей уровень TDP составляет 500 или 560 Вт, поэтому поддерживается как воздушное, так и жидкостное охлаждение. В дополнение к OAM-версиям MI250(X) чуть позже появится и более традиционная PCIe-модель MI210.
Для сравнения — у NVIDIA A100 объём и пропускная способность памяти (тоже HBM2e) составляют до 80 Гбайт и 2 Тбайт/с соответственно. Шина же NVLink 3.0 имеет пропускную способность 600 Гбайт/c, а коммутатор NVSwitch для связи между восемью ускорителями — 1,8 Тбайт/с. Потребление SXM3-версии составляет 400 Вт. Стоит также отметить, что первая версия A100 появилась ещё весной 2020 года, и скоро ожидается анонс следующего поколения ускорителей на базе архитектуры Hopper. На носу и выход ускорителей Intel Xe Ponte Vecchio.
И если про первые мы пока ничего толком не знаем, то вторые, похоже, уже проиграли MI250X в «голой» производительности как минимум по одной позиции (FP32). AMD говорит, что создавала Instinct MI200 как серию универсальных ускорителей, пригодных и для «классических» HPC-задач, и для ИИ. Отсюда и практически пятикратная разница в пиковой FP64-производительности с NVIDIA A100.
Но вот с нейронками всё не так однозначно. Предпочтительным форматом для обучения у NVIDIA является собственный TF32, поддержка которого есть в Tensor-ядрах Ampere. Ядра для матричных вычислений в CDNA2 про него ничего не знают, поэтому сравнить производительность в лоб нельзя. Разница в BF16/FP16 между MI250X и A100 уже не так велика, так что AMD говорит о приросте в 1,2 раза для обучения со смешанной точностью.
Данные по INT8 и INT4 в презентацию не вынесены, что неудивительно. Пиковый показатель для обоих форматов у MI250X составляет 383 Топс, тогда как тензорные ядра NVIDIA A100 выдают 624 и 1248 Топс соответственно. В данном случае больший объём памяти сыграл бы на руку MI200 в задачах инференса для крупных моделей. Наконец, у A100 есть ещё одно преимущество — поддержка MIG (Multi-Instance GPU), которая позволяет более эффективно задействовать имеющиеся ресурсы, особенно в облачных системах.
Вместе с Instinct MI200 была анонсирована и новая версия открытой (open source) платформы ROCm 5.0, которая обзавелась поддержкой и различными оптимизациями не только для этих ускорителей, но и, например, Radeon Pro W6800. В этом релизе компания уделит особое внимание расширению программной экосистемы и адаптации большего числа приложений. Кроме того, будет развиваться и новый портал Infinity Hub, где будет представлено больше готовых к использованию контейнеров с популярным ПО с рекомендациями по настройке и запуску.
AMD Instinct MI200 появятся в I квартале 2022 года. Новинки, в первую очередь MI210, будут доступны у крупных OEM/ODM-производителей: ASUS, Atos (X410-A5 2U1N2S), Dell Technologies, Gigabyte (G262-ZO0), HPE, Lenovo и Supermicro. Ускорители Instinct MI250X пока остаются эксклюзивом для систем HPE Cray Ex. Именно они вместе с «избранными» процессорами AMD EPYC (без уточнения, будут ли это Milan-X) станут основой для самого мощного в США суперкомпьютера Frontier.
Окончательный ввод в эксплуатацию этого комплекса запланирован на будущий год. Ожидается, что его пиковая производительность превысит 1,5 Эфлопс. При этом он должен стать самой энергоэффективной системой подобного класса. А адаптация ПО под него позволит несколько потеснить NVIDIA CUDA в некоторых областях. И это для AMD сейчас, пожалуй, гораздо важнее, чем победа по флопсам.
Циркулировавшие ранее слухи оказались верны — MI200 являются двухчиповыми решениями с 2.5D-упаковкой кристаллов (GCD) самих ускорителей, четырёх линий Infinity Fabric между ними и восьми стеков памяти HBM2e (8192 бит, 1600 МГц, 128 Гбайт, 3,2 Тбайт/c). В данном случае используется мостик EFB (Elevated Fanout Bridge), который позволяет задействовать стандартные подложки, что удешевляет и упрощает производство и тестирование ускорителей, не потеряв при этом в производительности и, что важнее, без существенного увеличения задержек в обмене данными.
Несмотря на то, что в составе ускорителя два GCD, системе они представляются как единое целое с общей же памятью. Каждый GCD в случае CDNA 2 включает 112 CU (Compute Unit), но в конечных продуктах они задействованы не все. CU разбиты на четыре группы (с индивидуальным планировщиком) с общим L2-кешем объёмом 8 Мбайт и пропускной способностью 6,96 Тбайт/с, который поделён на 32 отдельных блока. А сами блоки имеют индивидуальные подключения к контроллерам памяти в GCD.
Важное отличие CDNA 2 заключается в «подтягивании» производительности векторных FP64- и FP32-вычислений — они исполняются с одинаковой скоростью в отличие от CDNA первого поколения. Кроме того, появилась поддержка сжатых (packed) инструкций для операций FMA/FADD/FMUL для FP32-векторов. Второй крупный апдейт касается матричных вычислений. Для них теперь тоже есть отдельная поддержка FP64, и с той же производительностью, что и для FP32. Новые инструкции рассчитаны на блоки 16×16×4 и 4×4×4.
Поддержка FP16/BF16 в матричных ядрах, конечно, тоже есть, что позволяет задействовать их и для ИИ-задач, а не только HPC. Подспорьем для них в некоторых задачах будут два блока VCN (Video Codec Next) в каждом GCD. Они поддерживают декодирование H.264/AVC, H.265/HEVC, VP9 и JPEG, а также кодирование H.264/H.265, что потенциально позволит более эффективно работать ИИ-алгоритмам с изображениями и/или видео.
Для обмена данными между ускорителями и CPU используется единая шина Infinity Fabric (IF) с поддержкой кеш-когерентности. Всего на ускоритель приходится до восьми внешних линий IF, а суммарная скорость обмена данными может достигать 800 Гбайт/c. В наиболее плотной компоновке из четырёх MI200 и одного EPYC каждый ускоритель имеет по две линии для связи с CPU и со своим соседом. Причём внутренние и внешние IF-линии образуют два двунаправленных кольца между ускорителями. Каждая IF-линия опирается на x16-подключение PCIe 4.0, но в данном случае есть ряд оптимизаций конкретно под HPC-системы HPE Cray.
Дополнительно у каждого ускорителя есть собственный root-комплекс, что позволяет напрямую подключить сетевой адаптер класса 200G. И это явный намёк на возможность непосредственного RDMA-соединения с внешними хранилищами, поскольку в такой схеме на локальные NVMe-накопители линий попросту не остаётся. Более простые топологии уже предполагают использование половины линий IF в качестве обычного PCIe-подключения и задействуют коммутатор(-ы) для связи с CPU и NIC. В этом случае IF-подключение остаётся только между процессорами. Зато в одной системе можно объединить восемь MI200.
Чипы ускорителей MI250X изготовлены по 6-нм техпроцессу FinFet, содержат 58 млрд транзисторов и предлагают 220 CU, включающих 880 ядер для матричных вычислений и 14080 шейдерных ядер второго поколения. У MI250 их 208, 832 и 13312 соответственно. Для обеих моделей уровень TDP составляет 500 или 560 Вт, поэтому поддерживается как воздушное, так и жидкостное охлаждение. В дополнение к OAM-версиям MI250(X) чуть позже появится и более традиционная PCIe-модель MI210.
Для сравнения — у NVIDIA A100 объём и пропускная способность памяти (тоже HBM2e) составляют до 80 Гбайт и 2 Тбайт/с соответственно. Шина же NVLink 3.0 имеет пропускную способность 600 Гбайт/c, а коммутатор NVSwitch для связи между восемью ускорителями — 1,8 Тбайт/с. Потребление SXM3-версии составляет 400 Вт. Стоит также отметить, что первая версия A100 появилась ещё весной 2020 года, и скоро ожидается анонс следующего поколения ускорителей на базе архитектуры Hopper. На носу и выход ускорителей Intel Xe Ponte Vecchio.
И если про первые мы пока ничего толком не знаем, то вторые, похоже, уже проиграли MI250X в «голой» производительности как минимум по одной позиции (FP32). AMD говорит, что создавала Instinct MI200 как серию универсальных ускорителей, пригодных и для «классических» HPC-задач, и для ИИ. Отсюда и практически пятикратная разница в пиковой FP64-производительности с NVIDIA A100.
Но вот с нейронками всё не так однозначно. Предпочтительным форматом для обучения у NVIDIA является собственный TF32, поддержка которого есть в Tensor-ядрах Ampere. Ядра для матричных вычислений в CDNA2 про него ничего не знают, поэтому сравнить производительность в лоб нельзя. Разница в BF16/FP16 между MI250X и A100 уже не так велика, так что AMD говорит о приросте в 1,2 раза для обучения со смешанной точностью.
Данные по INT8 и INT4 в презентацию не вынесены, что неудивительно. Пиковый показатель для обоих форматов у MI250X составляет 383 Топс, тогда как тензорные ядра NVIDIA A100 выдают 624 и 1248 Топс соответственно. В данном случае больший объём памяти сыграл бы на руку MI200 в задачах инференса для крупных моделей. Наконец, у A100 есть ещё одно преимущество — поддержка MIG (Multi-Instance GPU), которая позволяет более эффективно задействовать имеющиеся ресурсы, особенно в облачных системах.
Вместе с Instinct MI200 была анонсирована и новая версия открытой (open source) платформы ROCm 5.0, которая обзавелась поддержкой и различными оптимизациями не только для этих ускорителей, но и, например, Radeon Pro W6800. В этом релизе компания уделит особое внимание расширению программной экосистемы и адаптации большего числа приложений. Кроме того, будет развиваться и новый портал Infinity Hub, где будет представлено больше готовых к использованию контейнеров с популярным ПО с рекомендациями по настройке и запуску.
AMD Instinct MI200 появятся в I квартале 2022 года. Новинки, в первую очередь MI210, будут доступны у крупных OEM/ODM-производителей: ASUS, Atos (X410-A5 2U1N2S), Dell Technologies, Gigabyte (G262-ZO0), HPE, Lenovo и Supermicro. Ускорители Instinct MI250X пока остаются эксклюзивом для систем HPE Cray Ex. Именно они вместе с «избранными» процессорами AMD EPYC (без уточнения, будут ли это Milan-X) станут основой для самого мощного в США суперкомпьютера Frontier.
Окончательный ввод в эксплуатацию этого комплекса запланирован на будущий год. Ожидается, что его пиковая производительность превысит 1,5 Эфлопс. При этом он должен стать самой энергоэффективной системой подобного класса. А адаптация ПО под него позволит несколько потеснить NVIDIA CUDA в некоторых областях. И это для AMD сейчас, пожалуй, гораздо важнее, чем победа по флопсам.